The binarity of a protostar affects the evolution of the disk and the planets

0
  • Duchêne, G. & Kraus, A. Stellar multiplicity. Ann. Reverend Astron. Astrophysic. 51269–310 (2013).

    Article on Google Scholar Ads

  • Jennings, RE, Cameron, DHM, Cudlip, W. & Hirst, CJ IRAS observations of NGC1333. Mon. No. R.Astron. Soc. 226461–471 (1987).

    ADS CAS Article Google Scholar

  • Sandell, G., Knee, LBG, Aspin, C., Robson, IE & Russell, APG A molecular jet and shock arc in the low-mass protostellar binary NGC 1333-IRAS2. Star. Astrophysic. 285L1–L4 (1994).

    Google Scholar CAS Announcements

  • Jørgensen, JK, Hogerheijde, MR, van Dishoeck, EF, Blake, GA & Schöier, FL Fine-scale flow, rotation, and chemistry in the NGC1333-IRAS2 protostellar system. Star. Astrophysic. 413993–1007 (2004).

    Article on Google Scholar Ads

  • Tobin, JJ et al. The VLA Nascent Disk and Multiplicity (VANDAM) survey of Perseus protostars. resolution of sub-arcsecond binary system in NGC 1333 IRAS2A. Astrophysic. J 79861 (2015).

    Article on Google Scholar Ads

  • Zucker, C. et al. Mapping distances through the perseus molecular cloud using CO observations, stellar photometry and Gaia DR2 parallax measurements. Astrophysic. J 86983 (2018).

    ADS CAS Article Google Scholar

  • Jorgensen, JK et al. Probing the inner 200 AU of low-mass protostars: high excitation transitions of organic molecules and continuous emission at high angular resolution towards the young class-0 stellar object NGC 1333-IRAS2A. Astrophysic. J 632973 (2005).

    Article on Google Scholar Ads

  • Fendt, C. & Zinnecker, H. Possible bending mechanisms of protostellar jets. Star. Astrophysic. 334750–755 (1998).

    Google Scholar announcements

  • Frank, A. et al. In Protostars and Planets VI (eds. Beuther, H. et al.) 451 (Univ. Arizona Press, 2014).

  • Plunkett, AL et al. Episodic molecular output in the very young Serpens South protostellar cluster. Nature 52770–73 (2015).

    ADS CAS Article Google Scholar

  • Jørgensen, JK, Belloche, A. & Garrod, RT Astrochemistry during star formation. Ann. Reverend Astron. Astrophysic. 58727–778 (2020).

    Article on Google Scholar Ads

  • Kuffmeier, M., Haugbølle, T. & Nordlund, Å. Zoom-in simulations of protoplanetary disks from GMC scales. Astrophysic. J 8467 (2017).

    Article on Google Scholar Ads

  • Kuruwita, RL & Federrath, C. The role of turbulence in the formation of circumbinary discs. Star. Astrophysic. 486A59 (2019).

    Google Scholar

  • Kuruwita, R.L., Federrath, C. & Haugbølle, T. The dependence of episodic accretion on eccentricity during binary star formation. Star. Astrophysic. 641A59 (2020).

    ADS CAS Article Google Scholar

  • Kuffmeier, M., Calcutt, H. & Kristensen, LE The bridge: a transient phenomenon of multiple stellar formation. Sequential formation of stellar companions in filaments around young protostars. Star. Astrophysic. 628A112 (2019).

    ADS CAS Article Google Scholar

  • Pineda, JE et al. A streamer-fed protostellar system 10,500 AU in length. Nat. Star. 41158-1163 (2020).

    Article on Google Scholar Ads

  • Brinch, C., Jørgensen, JK, Hogerheijde, MR, Nelson, RP, and Gressel, O. Misaligned disks in binary protostar IRS 43. Astrophysic. J. Lett. 830L16 (2016).

    Article on Google Scholar Ads

  • Lee, J.-E. Chemical evolution in VeLLOs. J. Korean Astro. Soc. 4083–89 (2007).

    Article on Google Scholar Ads

  • Visser, R. & Bergin, EA Fundamental aspects of the chemistry of episodic accretion explored with single-point models. Astrophysic. J. Lett. 754L18 (2012).

    Article on Google Scholar Ads

  • Jørgensen, JK, Visser, R., Williams, JP, and Bergin, EA Molecular sublimation as a tracer of protostellar accretion. Evidence of accretionary bursts from high angular resolution C18Oh pictures. Star. Astrophysic. 579A23 (2015).

    Article on Google Scholar Ads

  • Taquet, V., Wirström, ES & Charnley, SB Formation and recondensation of complex organic molecules during protostellar bursts of luminosity. Astrophysic. J 82146 (2016).

    Article on Google Scholar Ads

  • van ‘t Hoff, MLR, Bergin, EA, Jørgensen, JK & Blake, GA Sublimation of carbon grains: a new top-down component of protostellar chemistry. Astrophysic. J. Lett. 897L38 (2020).

    Article on Google Scholar Ads

  • McMullin, JP, Waters, B., Schiebel, D., Young, W. & Golap, K. CASA Architecture and Applications. In proc. XVI Astronomical Data Analysis Software and Systems (eds Shaw, RA, Hill, F. & Bell, DJ) Vol. 376, Astronomical Society of the Pacific Conference Series, 127 (Astron. Soc. Pacific, 2007).

  • Karska, A. et al. The Herschel-PACS heritage of low-mass protostars: the properties of hot, hot gaseous components and their origin in far-UV illuminated shocks. Astrophysic. J. Suppl. Ser. 23530 (2018).

    Article on Google Scholar Ads

  • Artur de la Villarmois, E. et al. Physical and chemical fingerprint of the formation of the protostellar disc. Star. Astrophysic. 626A71 (2019).

    Google Scholar article

  • Bailer-Jones, CAL, Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimation of distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in the publication of the first Gaia 3 data. Star. J 161147 (2021).

    Article on Google Scholar Ads

  • Rodgers, SD & Charnley, SB Chemical evolution in protostellar envelopes: cocoon chemistry. Astrophysic. J 585355–371 (2003).

    ADS CAS Article Google Scholar

  • Jørgensen, JK, Schöier, FL & van Dishoeck, EF Physical structure and CO abundance of low-mass protostellar envelopes. Star. Astrophysic. 389908–930 (2002).

    Article on Google Scholar Ads

  • Kristensen, LE et al. Water in star forming regions with Herschel (WISH). II. 557 GHz Evolution 1ten-101 emission in low-mass protostars. Star. Astrophysic. 542A8 (2012).

    Google Scholar article

  • Teyssier, R. Cosmological Hydrodynamics with Adaptive Mesh Refinement. A new high resolution code called RAMSES. Star. Astrophysic. 385337–364 (2002).

    Article on Google Scholar Ads

  • Haugbølle, T., Padoan, P. & Nordlund, Å. The stellar MHD turbulence isothermal MHD. Astrophysic. J 85435 (2018).

    Article on Google Scholar Ads

  • Offner, SSR, Klein, RI, McKee, CF & Krumholz, MR The effects of radiative transfer on low-mass star formation. Astrophysic. J 703131-149 (2009).

    Article on Google Scholar Ads

  • Bate, MR Stellar, brown dwarf, and multiple star properties from a hydrodynamic radiation simulation of star cluster formation. Mon. No. R.Astron. Soc. 4193115–3146 (2012).

    Article on Google Scholar Ads

  • Klein, RI Feedback effects in the formation of high-mass and low-mass stars. In proc. Numerical modeling of space plasma flows, Astronum-2009 (eds Pogorelov, NV et al.) Vol. 429, Astronomical Society of the Pacific Conference Series, 97 (Astron. Soc. Pacific, 2010).

  • Krumholz, MR, Klein, RI & McKee, CF Hydrodynamic radiation simulations of Orion-like star cluster formation. II. The initial mass is a function of winds, turbulence and radiation. Astrophysic. J 75471 (2012).

    Article on Google Scholar Ads

  • Hennebelle, P., Commerçon, B., Lee, Y.-N. & Chabrier, G. What is the role of stellar radiative feedback in defining the stellar mass spectrum? Astrophysic. J 904194 (2020).

    ADS CAS Article Google Scholar

  • Tanaka, KEI, Tan, JC, Zhang, Y. & Hosokawa, T. The impact of feedback in the formation of massive stars. II. Lower star formation efficiency at lower metallicity. Astrophysic. J 86168 (2018).

    Article on Google Scholar Ads

  • Kuiper, R. & Hosokawa, T. First hydrodynamic simulations of radiation forces and photoionization feedback in massive star formation. Star. Astrophysic. 616A101 (2018).

    Article on Google Scholar Ads

  • Share.

    About Author

    Comments are closed.